Jason Barton

Prospective Graduate Students / Postdocs

This faculty member is currently not looking for graduate students or Postdoctoral Fellows. Please do not contact the faculty member with any such requests.

Professor

Research Classification

Research Interests

face recognition
neurologic disorders of higher level visual processing
saccade and pursuit control

Relevant Thesis-Based Degree Programs

Graduate Student Supervision

Doctoral Student Supervision

Dissertations completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest dissertations.

Eye Region Processing: Insights from Acquired Prosopagnosia (2014)

Face processing models propose a holistic representation of faces in the human brain. Additionally, behavioral studies in healthy individuals indicate a bias towards the eye region of faces, namely a Feature Salience Hierarchy. The exact mechanisms of this feature salience hierarchy are not known. Using behavioral face perception and neuroimaging experiments, we investigated the perceptual mechanisms and the neural correlates of the feature salience hierarchy, and the correlations of the human perceptual performance with the neural signal. Prosopagnosia studies also indicate an asymmetrical loss of the ability to deduce information from the eye region of faces. In a cohort of ten acquired prosopagnosia patients, we investigated and characterized the relationship between the structural brain damage and the behavioral face processing impairments. This dissertation examines the perceptual and neuroanatomical bases of the bias towards the eye region of a face in healthy individuals and the deviation from this bias in relation to the brain lesion locations in acquired prosopagnosia patients. Our findings confirm the dominance of the eyes in feature salience hierarchy in an adaptation aftereffects experiment. Investigation of the neuroanatomical correlates of the feature salience hierarchy shows that the activation pattern in Fusiform Face Area (FFA) correlates with the human perceptual performance, suggesting FFA鈥檚 involvement in the feature salience hierarchy demonstrated for the eye region of faces behaviorally. Examination of the eye region processing in prosopagnosia patients shows that both apperceptive and associative variants of prosopagnosia can cause eye region processing deficits, yet apperceptive prosopagnosia patients with inferior occipitotemporal cortex lesions have significantly more severe deficits in eye region processing. Face scanning patterns in a learning and memory task with unlimited viewing times demonstrate that both healthy and prosopagnosic individuals spend more time looking at the upper halves of faces while learning the faces, yet prosopagnosia patients spend significantly longer durations studying the faces. Our investigation of memory for half faces indicate that when presented in isolation, the upper and lower face halves do not have different contributions to face memory in healthy subjects. Prosopagnosia patients are similarly impaired in memory for upper and lower face halves.

Face perception : the relationship between identity and expression processing (2008)

Current models of face perception suggest independent processing of identity and expression, though this distinction is still unclear. Using converging methods of psychophysics and functional magnetic resonance imaging (fMRI) in healthy and patient populations we assessed the relationship between these two perceptual processes. First, using perceptual aftereffects, we explored the neural representations underlying identity and expression. The expression aftereffect only partially transferred across different identities, suggesting adaptation within identity-invariant and identity-dependent expression representations. Contrarily, the identity aftereffect fully transferred across different expressions. This asymmetry cannot be explained through low-level adaptation. The identity-dependent component of the expression aftereffect relies on adaptation to a coherent expression, not low-level features, in the adapting face. Thus adaptation generating the expression aftereffect must occur within high-level representations of facial expression. Second, using fMRI adaptation, we examined identity and expression sensitivity in healthy controls. The fusiform face area and posterior superior temporal sulcus showed sensitivity for both identity and expression changes. Independent sensitivity for identity and expression changes was observed in the precuneus and middle superior temporal sulcus respectively. Finally, we explored identity and expression perception in a neuropsychological population. Selective identity impairments were associated with inferior occipitotemporal damage, not necessarily affecting the occipital or fusiform face areas. Impaired expression perception was associated with superior temporal sulcus damage, and also with deficits in the integration of identity and expression. In summary, psychophysics, neuroimaging and neuropsychological methods all provide converging evidence for the independent processing of identity and expression within the face network. However, these same methods also supply converging evidence for a partial dependence of these two perceptual processes: in the expression aftereffect, the functional sensitivities of the FFA and pSTS, and identity deficits observed in a patient with primarily impaired expression perception and a spared inferotemporal cortex. Thus, future models of face perception must incorporate representations or regions which independently process identity or expression as well as those which are involved in the perception of both identity and expression.

Master's Student Supervision

Theses completed in 2010 or later are listed below. Please note that there is a 6-12 month delay to add the latest theses.

The Global Effect for Antisaccades (2012)

In the global effect, prosaccades are deviated to a position intermediate between two targets or between a distractor and a target, which may reflect spatial averaging in the collicular map. Antisaccades differ from prosaccades in that they dissociate the locations of the stimulus and goal, and generate weaker collicular activity. We used these antisaccade properties to determine whether the global effect was generated in stimulus or goal computations, and if the global effect would be larger for antisaccades, as predicted by an origin of the effect in collicular averaging. In the first two experiments, human subjects performed antisaccades while distractors were placed in the vicinity of either the stimulus or the saccadic goal. Global effects occurred only for goal-related and not for stimulus-related distractors, indicating that this effect emerges from interactions with motor representations. In the last experiment, subjects performed prosaccades and antisaccades with and without goal-related distractors. When the results were adjusted for differences in response latency, the global effects for rapid responses were three to four times larger for antisaccades than for prosaccades. These results were consistent with predictions of spatial averaging in a collicular model. We conclude that the antisaccade global effect shows properties compatible with spatial averaging in collicular maps, and if so, originate in layers with neural activity related to goal rather than stimulus representations.

Publications

  • (2025)
    Perception, 54 (5), 333-348
  • (2025)
    Cortex, 183, 330-348
  • (2025)
    Experimental Brain Research, 243 (2)
  • (2025)
    Handbook of Clinical Neurology, 208, 301-325
  • (2025)
    Eye (Basingstoke)
  • (2024)
    Canadian Journal of Neurological Sciences, 51 (1), 117-121
  • (2024)
    Behavioural Brain Research, 461
  • (2024)
    Canadian Journal of Neurological Sciences
  • (2023)
    Cognitive Neuropsychology, 40 (2), 59-70
  • (2023)
    Brain Sciences, 13 (1)
  • (2023)
    Experimental Brain Research, 241 (4), 1131-1144
  • (2023)
    Neuropsychologia, 183
  • (2023)
    Vision Research, 206
  • (2023)
    Cognitive Neuropsychology, 40 (7-8), 351-366
  • (2022)
    Brain Research, 1783
  • (2022)
    Annals of Indian Academy of Neurology, 25 (8), 106-112
  • (2022)
    Neurology: Clinical Practice, 12 (6), 422-428
  • (2022)
    Behavior Research Methods, 54 (6), 2829-2842
  • (2022)
    A Clinical Approach to Neuro-Ophthalmic Disorders, 249-268
  • (2022)
    Brain Sciences, 12 (12)
  • (2022)
    Albert and Jakobiec's Principles and Practice of Ophthalmology: Fourth Edition, 4375-4417
  • (2022)
    Handbook of Clinical Neurology, 187, 191-210
  • (2022)
    Neuropsychologia, 168
  • (2022)
    Experimental Brain Research, 240 (3), 861-869
  • (2022)
    Cortex, 157, 288-303
  • (2022)
    Experimental Brain Research, 240 (11), 2835-2846
  • (2022)
    Perception, 51 (8), 578-590
  • (2022)
    Neuropsychologia, 165
  • (2021)
    Survey of Ophthalmology, 66 (4), 677-679
  • (2021)
    Annals of Neurology, 89 (5), 1055
  • (2021)
    Journal of Behavioral Addictions, 9 (4), 1044-1055
  • (2021)
    Handbook of Clinical Neurology, 178, 257-275
  • (2021)
    Handbook of Clinical Neurology, 178, ix-x
  • (2021)
    Encyclopedia of Behavioral Neuroscience: Volumes 1-3, Second edition, 1-3, V2-597-V2-604
  • (2021)
    Encyclopedia of Behavioral Neuroscience: Second Edition, 2-3, 597-604
  • (2021)
    Handbook of Clinical Neurology, 178, 175-193
  • (2021)
    Handbook of Clinical Neurology, 178, 361-386
  • (2021)
    Annals of Neurology, 89 (4), 848-849
  • (2021)
    Annals of Neurology, 89 (2), 420-421
  • (2021)
    Neurology, 97 (18), E1868-E1869
  • (2021)
    Survey of Ophthalmology, 66 (2), 346-353
  • (2021)
    Cognitive Neuropsychology, 38 (3), 231-257
  • (2020)
    Brain Research, 1746
  • (2020)
    Clinical Neurology and Neurosurgery, 189
  • (2020)
    Annals of Neurology, 88 (5), 1054-1055
  • (2020)
    Annals of Neurology, 88 (3), 453-461
  • (2019)
    Parkinsonism and Related Disorders, 66, 189-194
  • (2019)
    Brain, 142 (12), 3975-3990
  • (2019)
    Cognitive Neuropsychology, 36 (1-2), 54-84
  • (2019)
    Neuropsychologia, 124, 87-97
  • (2019)
    F1000Research, 8
  • (2019)
    Journal of Cognitive Neuroscience, 32 (5), 889-905
  • (2019)
    Brain Sciences, 9 (8)
  • (2019)
    Neuropsychologia, 134
  • (2019)
    Vision Research, 162, 8-19
  • (2019)
    Scientific Reports, 9 (1)
  • (2018)
    Journal of Neurology, 265 (3), 453-459
  • (2018)
    Frontiers in Human Neuroscience, 12
  • (2018)
    Perception, 47 (3), 330-343
  • (2018)
    Cognitive Neuropsychology, 35 (1-2), 90-93
  • (2018)
    Vision Research, 153, 91-97
  • (2018)
    Experimental Brain Research, 236 (2), 485-495
  • (2018)
    Journal of Neuro-Ophthalmology, 38 (3), 271-275
  • (2018)
    Journal of Neuroscience, 38 (48), 10362-10370
  • (2017)
    Visual Cognition, 25 (4-6), 666-678
  • (2017)
    Homonymous Visual Field Defects, 121-133
  • (2017)
    Cortex, 96, 59-72
  • (2017)
    Neurology: Clinical Practice, 7 (5), 425-429
  • (2017)
    Neuropsychologia, 105, 215-222
  • (2017)
    Journal of Cognitive Neuroscience, 29 (3), 573-591
  • (2016)
    Survey of Ophthalmology, 61 (5), 674-679
  • (2016)
    Cortex, 76, 89-103
  • (2016)
    Neuropsychologia, 89, 153-160
  • (2016)
    Eye and Brain, 8, 165-175
  • (2016)
    Cortex, 75, 132-150
  • (2016)
    American Journal of Neuroradiology, 37 (8), 1487-1489
  • (2016)
    Cortex, 81, 251-265
  • (2016)
    Neuropsychologia, 83, 76-87
  • (2016)
    Neurology, 87 (6), e60
  • (2016)
    Journal of Vision, 16 (6)
  • (2016)
    Cognitive Neuropsychology, 33 (7-8), 353-361
  • (2016)
    Experimental Brain Research, 234 (2), 409-418
  • (2016)
    Survey of Ophthalmology, 61 (2), 248-254
  • (2016)
    Neuropsychologia, 89, 119-124
  • (2016)
    Brain Research, 1644, 88-97
  • (2016)
    Visual Cognition, 24 (4), 304-320
  • (2016)
    Experimental Brain Research, 234 (9), 2457-2463
  • (2016)
    Cerebral Cortex, 26 (4), 1473-1487
  • (2016)
    Cognitive Neuropsychology, 33 (5-6), 315-328
  • A vertical asymmetry in saccades (2015)
    Journal of Eye Movement Research, 8 (5)
  • (2015)
    Survey of Ophthalmology, 60 (2), 177-181
  • (2015)
    Cognitive Neuropsychology, 32 (6), 368-384
  • (2015)
    PLoS ONE, 10 (4)
  • (2015)
    Evidence-Based Neurology: Management of Neurological Disorders: Second Edition, 291-302
  • (2015)
    Canadian Journal of Neurological Sciences, 43 (2), 227-237
  • (2015)
    Neuropsychologia, 69, 232-241
  • (2015)
    Cognitive Neuropsychology, 32 (5), 266-282
  • (2015)
    Canadian Journal of Ophthalmology, 50 (4), 257-264
  • (2015)
    Neuropsychologia, 70, 156-164
  • (2015)
    Cortex, 71, 390-397
  • (2015)
    Annals of Neurology, 78 (2), 258-271
  • (2014)
    Journal of Psychosomatic Research, 77 (2), 144-150
  • Acquired prosopagnosia: Structural basis and processing impairments (2014)
    Frontiers in Bioscience - Elite, 6 E (1), 159-174
  • (2014)
    Vision Research, 100, 18-28
  • (2014)
    Brain Research, 1586, 152-161
  • (2014)
    CONTINUUM Lifelong Learning in Neurology, 20 (4), 922-941
  • (2014)
    Experimental brain research, 232 (3), 1025-1036
  • (2014)
    Neuropsychologia, 53 (1), 274-283
  • (2014)
    Proceedings of the National Academy of Sciences of the United States of America, 111 (14), 5123-5128
  • (2014)
    Cortex, 50, 200-203
  • (2014)
    Neuropsychologia, 59 (1), 179-191
  • (2014)
    Experimental Brain Research, 232 (12), 3699-3705
  • The inter-trial spatial biases of stimuli and goals in saccadic programming (2014)
    Journal of Eye Movement Research, 7 (4)
  • (2014)
    Cognitive Neuropsychology, 31 (5-6), 378-412
  • (2014)
    Encyclopedia of the Neurological Sciences, 677-680
  • (2014)
    Encyclopedia of the Neurological Sciences, 704-706
  • (2014)
    Encyclopedia of the Neurological Sciences, 714-716
  • (2014)
    Perception, 43 (5), 438-450
  • (2013)
    NeuroImage: Clinical, 2 (1), 320-331
  • (2013)
    Biological Psychiatry, 73 (10), 967-975
  • (2013)
    Neuropsychologia, 51 (13), 2679-2689
  • (2013)
    Cognitive Neuropsychology, 30 (1), 25-40
  • (2013)
    Cognition, 129 (1), 88-94
  • (2013)
    Neuropsychologia, 51 (7), 1260-1272
  • (2013)
    PLoS ONE, 8 (9)
  • (2013)
    Frontiers in Psychology, 4 (OCT)
  • (2013)
    Experimental Brain Research, 225 (2), 247-259
  • (2013)
    Cortex, 49 (1), 252-265
  • (2013)
    Brain Research, 1518, 61-70
  • (2013)
    Perception, 42 (2), 176-186
  • (2013)
    PLoS ONE, 8 (2)
  • (2013)
    Frontiers in Human Neuroscience (APR 2013)
  • (2012)
    Biological Psychology, 89 (1), 191-194
  • (2012)
    Stroke Syndromes: Third Edition, 75-97
  • (2012)
    Cortex, 48 (4), 477-486
  • (2012)
    Neuropsychologia, 50 (6), 1190-1201
  • (2012)
    Journal of the Neurological Sciences, 316 (1-2), 184-188
  • (2012)
    Survey of Ophthalmology, 57 (4), 379-385
  • (2012)
    Neurology, 79 (6)
  • (2012)
    Experimental Brain Research, 222 (4), 345-353
  • (2012)
    PLoS ONE, 7 (4)
  • (2012)
    Oxford Handbook of Face Perception
  • (2012)
    Cortex, 48 (6), 725-736
  • (2012)
    Neuropsychologia, 50 (5), 841-851
  • (2012)
    Experimental Brain Research, 222 (3), 175-183
  • (2011)
    Schizophrenia Research, 132 (1), 62-68
  • (2011)
    Proceedings of the Royal Society B: Biological Sciences, 278 (1718), 2591-2597
  • (2011)
    Brain Research, 1410, 112-119
  • (2011)
    Cognitive Neuropsychology, 28 (5), 322-337
  • (2011)
    Journal of the Neurological Sciences, 309 (1-2), 123-127
  • (2011)
    Current Opinion in Neurology, 24 (1), 1-5
  • (2011)
    Handbook of Clinical Neurology, 102, 223-261
  • (2011)
    Brain Research, 1367, 265-277
  • (2011)
    PLoS ONE, 6 (1)
  • (2011)
    Neuroscience, 196, 168-177
  • (2011)
    Vision Research, 51 (1), 215-221
  • (2011)
    Neural Networks, 24 (6), 665-677
  • (2011)
    Cortex, 47 (7), 787-799
  • (2011)
    Neuropsychologia, 49 (12), 3188-3200
  • (2011)
    Cerebral Cortex, 21 (7), 1593-1601
  • (2011)
    Cerebral Cortex, 21 (2), 245-253
  • (2011)
    Neuropsychologia, 49 (9), 2553-2563
  • (2011)
    Neuropsychologia, 49 (12), 3377-3382
  • (2011)
    Survey of Ophthalmology, 56 (5), 461-465
  • (2011)
    Journal of Neuro-Ophthalmology, 31 (2), 155-159
  • (2011)
    Neurology, 76 (2), 201
  • (2010)
    Neurocase, 16 (2), 106-118
  • (2010)
    Vision Research, 50 (18), 1845-1854
  • (2010)
    Experimental Brain Research, 203 (3), 553-562
  • (2010)
    Brain and Cognition, 74 (1), 66-73
  • (2010)
    Neurology, 74 (11)
  • (2010)
    Journal of Vision, 10 (12), 1-12
  • (2010)
    Experimental Brain Research, 206 (2), 189-196
  • (2010)
    CONTINUUM Lifelong Learning in Neurology, 16 (4), 111-127
  • (2010)
    Journal of Cognitive Neuroscience, 22 (8), 1649-1661
  • (2010)
    Molecular Genetics and Metabolism, 99 (3), 291-295
  • (2010)
    Neuropsychologia, 48 (6), 1742-1749
  • (2010)
    Journal of Neuro-Ophthalmology, 30 (3), 248-251
  • (2010)
    Neuropsychologia, 48 (13), 3868-3877
  • (2010)
    NeuroImage, 52 (1), 336-347
  • (2010)
    Experimental Brain Research, 202 (2), 445-455
  • (2010)
    Experimental Brain Research, 201 (1), 65-73
  • (2009)
    Behavioural Brain Research, 196 (2), 187-191
  • (2009)
    NeuroReport, 20 (13), 1177-1182
  • (2009)
    Journal of Neuro-Ophthalmology, 29 (2), 96-103
  • (2009)
    Vision Research, 49 (18), 2254-2260
  • (2009)
    Human Brain Mapping, 30 (5), 1637-1651
  • (2009)
    Neuropsychologia, 47 (1), 30-40
  • (2009)
    Neuropsychologia, 47 (8-9), 1994-2003
  • (2009)
    Vision Research, 49 (14), 1901-1908
  • (2009)
    NeuroReport, 20 (4), 398-402
  • (2009)
    CONTINUUM Lifelong Learning in Neurology, 15 (4), 168-187
  • (2009)
    Canadian journal of ophthalmology. Journal canadien d'ophtalmologie, 44 (4), 467-468
  • (2009)
    Neurology, 72 (15)
  • (2009)
    Brain, 132 (12), 3456-3466
  • (2009)
    NeuroImage, 44 (2), 569-580
  • (2009)
    Perception, 38 (2), 242-260
  • (2008)
    NeuroImage, 42 (2), 710-716
  • (2008)
    Canadian Journal of Neurological Sciences, 35 (5), 616-624
  • (2008)
    European Journal of Neuroscience, 27 (4), 1017-1025
  • (2008)
    Cortex, 44 (8), 996-1009
  • (2008)
    Experimental Brain Research, 186 (3), 431-442
  • (2008)
    Brain Research, 1191, 116-126
  • (2008)
    Journal of Vision, 8 (3)
  • (2008)
    Survey of Ophthalmology, 53 (5), 506-511
  • (2008)
    Hippocampus, 18 (4), 335-339
  • (2008)
    Neuropsychologia, 46 (8), 2214-2224
  • (2008)
    Brain, 131 (4), 971-986
  • (2008)
    Brain, 131 (9), 2464-2478
  • (2008)
    Journal of Vision, 8 (8)
  • (2008)
    Journal of neuropsychology, 2 (Pt 1), 197-225
  • (2008)
    Journal of Neurophysiology, 100 (2), 587-597
  • (2008)
    Perception, 37 (9), 1412-1425
  • (2008)
    Neuroscience, 155 (2), 409-422
  • (2008)
    Journal of Experimental Psychology: Human Perception and Performance, 34 (5), 1129-1135
  • (2008)
    Journal of Cognitive Neuroscience, 20 (11), 2025-2036
  • (2008)
    Experimental Brain Research, 186 (2), 273-282
  • (2008)
    Vision Research, 48 (25), 2545-2554
  • (2007)
    Journal of Cognitive Neuroscience, 19 (1), 102-108
  • (2007)
    Neurology, 69 (9), 860-870
  • (2007)
    Journal of Neuroscience, 27 (7), 1791-1798
  • (2007)
    NeuroImage, 37 (2), 599-610
  • (2007)
    Experimental Brain Research, 181 (2), 199-211
  • (2007)
    Neuropsychologia, 45 (4), 871-875
  • (2007)
    Journal of Neuro-Ophthalmology, 27 (4), 268-274
  • (2007)
    Experimental Brain Research, 181 (3), 493-502
  • (2007)
    Brain Research, 1127 (1), 80-89
  • (2007)
    NeuroImage, 36 (4), 1313-1323
  • (2006)
    Vision Research, 46 (8-9), 1411-1421
  • (2006)
    Perception, 35 (8), 1089-1105
  • (2006)
    Schizophrenia Research, 82 (2-3), 191-201
  • (2006)
    Experimental Brain Research, 168 (1-2), 76-87
  • (2006)
    Experimental Brain Research, 172 (1), 114-119
  • (2006)
    Experimental Brain Research, 174 (3), 487-498
  • (2006)
    Neuroscience, 139 (1), 385-392
  • (2005)
    Neurology, 65 (2), 270-274
  • (2005)
    Neurology, 65 (10), 1620-1625
  • (2005)
    Proceedings of the National Academy of Sciences of the United States of America, 102 (43), 15700-15705
  • (2005)
    Brain, 128 (9), 2123-2133
  • (2005)
    Journal of Abnormal Psychology, 114 (1), 75-84
  • (2004)
    Neurology, 63 (5), 925-927
  • (2004)
    Brain, 127 (8), 1706-1716
  • (2004)
    Journal of Neurology, Neurosurgery and Psychiatry, 75 (12), 1719-1726
  • (2004)
    Perception, 33 (8), 939-956
  • (2004)
    Perception, 33 (10), 1221-1231
  • (2004)
    Neurology, 63 (11), 2062-2068
  • (2004)
    Experimental Brain Research, 159 (1), 99-107
  • (2004)
    Neuro-Ophthalmology, 28 (4), 171-178
  • (2003)
    Proceedings of the National Academy of Sciences of the United States of America, 100 (22), 13105-13110
  • (2003)
    Perception, 32 (1), 15-28
  • (2003)
    Brain, 126 (10), 2164-2174
  • (2003)
    Brain and Cognition, 51 (1), 12-30
  • (2003)
    Neurologic Clinics, 21 (2), 521-548
  • (2003)
    Neurology, 61 (2), 220-225
  • (2003)
    Brain, 126 (11), 2537-2550
  • (2003)
    Encyclopedia of the Neurological Sciences: Volumes 1-4, 3, V3-215-V3-218
  • (2003)
    Neuropsychologia, 41 (12), 1703-1711
  • (2003)
    Neurocase, 9 (5), 436-440
  • (2003)
    Neurologic Clinics, 21 (2)
  • (2003)
    Neurologic Clinics, 21 (3)
  • (2002)
    Annals of the New York Academy of Sciences, 956, 250-263
  • (2002)
    Experimental Brain Research, 144 (4), 528-537
  • (2002)
    Journal of Cognitive Neuroscience, 14 (8), 1174-1183
  • (2002)
    Neurology, 58 (1), 71-78
  • (2002)
    Physiology and Behavior, 77 (4-5), 613-619
  • (2002)
    Biological Psychiatry, 51 (10), 816-826
  • The cost of delaying treatment in multiple sclerosis: what is lost is not regained. (2002)
    Neurology, 58 (4)
  • (2001)
    Neurology, 57 (12), 2318-2319
  • (2001)
    Neurology, 57 (7), 1161-1168
  • Deficits in cortical visual function (2001)
    Ophthalmology Clinics of North America, 14 (1), 217-242
  • (2001)
    British Journal of Psychology, 92 (3), 527-549
  • (2001)
    Journal of Vision, 1 (3)
  • (2001)
    Journal of Vision, 1 (3)
  • (2001)
    Neuropsychologia, 39 (9), 983-1002
  • (2001)
    Neuron, 32 (6), 985-995
  • (2001)
    Journal of Neuro-Ophthalmology, 21 (4), 250-255
  • Ocular aspects of myasthenia gravis (2000)
    Seminars in Neurology, 20 (1), 7-20
  • (1999)
    Journal of Laryngology and Otology, 113 (1), 19-23
  • (1999)
    Journal of Clinical Neuroscience, 6 (1), 68-70
  • (1999)
    American Journal of Ophthalmology, 127 (1), 109-110
  • (1999)
    Neuropsychologia, 37 (3), 267-277
  • (1998)
    Current Opinion in Ophthalmology, 9 (6), 40-45
  • (1998)
    Journal of Neurology Neurosurgery and Psychiatry, 64 (5), 660-662
  • (1998)
    Brain, 121 (6), 1117-1131
  • (1998)
    Brain, 121 (6), 1165-1183
  • (1998)
    Journal of the Neurological Sciences, 155 (1), 104-114
  • (1998)
    American Journal of Ophthalmology, 125 (3), 401-403
  • (1997)
    Neuropsychologia, 35 (11), 1445-1458
  • (1997)
    Annals of Neurology, 41 (2), 255-264
  • (1997)
    Brain, 120 (4), 681-699
  • (1996)
    Brain, 119 (5), 1535-1550
  • (1996)
    Annals of Neurology, 40 (3), 387-398
  • (1996)
    Vision Research, 36 (19), 3051-3059
  • (1996)
    Neurology, 46 (1), 289
  • 'Saccadic jitter' is a quantitative ocular sign in myasthenia gravis (1995)
    Investigative Ophthalmology and Visual Science, 36 (8), 1566-1572
  • (1995)
    Canadian Journal of Neurological Sciences / Journal Canadien des Sciences Neurologiques, 22 (1), 52-55
  • Blink- and saccade-induced seesaw nystagmus (1995)
    Neurology, 45 (4), 831-833
  • (1995)
    Annals of Neurology, 37 (5), 665-675
  • (1995)
    Neurology, 45 (11), 2065-2072
  • (1995)
    Neurology, 45 (8), 1634
  • (1994)
    Annals of Neurology, 36 (4), 585-594
  • (1994)
    Journal of Neuro-Ophthalmology, 14 (3), 160-162
  • (1994)
    Journal of Neurology, Neurosurgery and Psychiatry, 57 (10), 1263-1264
  • (1994)
    Neurology, 44 (2), 273-278
  • (1994)
    Annals of Neurology, 35 (3), 319-325
  • (1993)
    Journal of Neurology Neurosurgery and Psychiatry, 56 (3), 262-267
  • (1993)
    Annals of Neurology, 33 (4), 418-421
  • (1991)
    Clinics in Geriatric Medicine, 7 (3), 525-548
  • (1983)
    Oral Surgery, Oral Medicine, Oral Pathology, 55 (4), 355-358

Membership Status

Member of G+PS
View explanation of statuses

Location

Vancouver General Hospital

Program Affiliations

If this is your researcher profile you can log in to the portal to update your details and provide recruitment preferences.

Explore our wide range of course-based and research-based program options!